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MMS is a NASA mission to study the Earth’s magnetosphere scheduled to launch in

2014. The mission will employ 4 spacecraft that must maintain a near-regular tetrahedron

in a region centered about apoapsis of a highly elliptic orbit. This paper contains a sensitiv-

ity analysis that illustrates which error sources and perturbations are drivers of formation

degradation. The sensitivity to navigation and control errors is performed by comparing

the semimajor axis errors due to position and velocity knowledge errors and errors in ma-

neuver direction, magnitude, and location. Sensitivity to perturbations is investigated by

comparing the magnitudes of the monodromy matrix at apoapsis for different dynamics

models. We also present several design techniques to mitigate or remove the effects of

perturbations. The design techniques combine numerical methods with analytic conditions

designed to eliminate or reduce effects of the J2 perturbation.

I. Nomenclature

Variables

a Semimajor axis
e Eccentricity
i Inclination
M Mean anomaly
Ω Right ascension of the ascending node
ω Argument of periapsis
ν True anomaly
E Eccentric anomaly
φ Flight path angle
Φ State Transition Matrix
s Along track distance
vr Radial component of orbital velocity
vt Tangential component of orbital velocity
n Orbit mean motion
p Orbit semi-parameter
r Magnitude of position vector
v Magnitude of velocity vector
µ Gravitational parameter
t Time
r Position vector
v Velocity vector
X Optimization state vector
x Orbit cartesian state vector, x = [rT vT ]T

sik ith side vector at time tk
sik ith side length at time tk
Qv Volume portion of quality factor
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Qs Shape portion of quality factor
J Formation cost function
Re Mean equatorial Earth radius
J2 First zonal harmonic
Q̄i Mean quality factor over ith Region of Interest pass
x̂ Reference trajectory
P Perturbation metric
ǫn Random number sampled from a zero mean, 1σ, normal distribution
ǫu Random number between 0 and 1 sampled from a uniform distribution

Subscripts

i Tetrahedron side index (i ∈ [1, 2, 3, 4, 5, 6])
o Per orbit
k Evaluated at time tk
p Evaluated at periapsis
a Evaluated at apoapsis
e Error

II. INTRODUCTION

The MMS1 mission is part of the Solar Terrestrial Probes (STP) program and its primary science objective
is to study magnetic reconnection. The mission consists of two phases and will employ 4 spacecraft in a
tetrahedral configuration in highly elliptic orbits. The known orbital states as of this writing are included
in Table 1. Acceptable formations must be provided in the science Region of Interest (RoI) defined as all
portions of the orbit above radius 9 Re for Phase I and 15 Re for Phase II. We must provide near regular
tetrahedrons of scale sizes 160, 60, 25, and 10 km in both phases and an additional size of 400 km in Phase
II.

There are rigorous requirements on formation geometry that are cast in a performance metric that
quantifies the quality of a formation for science return. The formation quality factor, Q, compares the
shape and size of an achieved tetrahedron of spacecraft with a regular tetrahedron of acceptable size. If the
achieved tetrahedron is planar, Q is zero, and if the achieved tetrahedron is regular and has an acceptable
scale size, Q is 1. The requirement on quality factor is that it must exceed 0.7 for 80% of the time in the RoI.
The mean time between formation maintenance maneuvers must be greater than two weeks. Finally, close
approaches of 4 km are prohibited anywhere in the orbit, and if possible, we should avoid close approaches
of 6 km in the region near periapsis.

Table 1. Nominal Orbit States

OE Phase I Phase II

ra 12 Re = 76537.6 km 25Re = 159453.4 km

rp 1.2 Re = 7653.8 km 1.2 Re = 7653.8 km

a 42095.7 km 83553.6 km

e 0.81818 0.9084

i 28.5◦ 28.5◦

ω TBD TBD

Ω TBD TBD

ν TBD TBD

There has been considerable work in the area of formation flying and specifically in the area of tetrahedron
design and control. The Cluster II mission is an operational mission that employs a tetrahedron of spacecraft
and uses linear programming to simultaneously minimize fuel while meeting guidance and multi-orbit peri-
odicity requirements.2–6 Many researchers have studied the guidance problem.8–12 Carpenter and Alfriend13
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et al. investigated formation sensitivity to navigation errors. Many researchers have investigated solving the
guidance and control problem simultaneously including Schoenmaekers,3 Huntington and Rao,14, 16 Breger15

et al., Guzman,17 and Clemente and Atkins18 et. al.. Analysis specific to MMS mission design was performed
by Petruzzo,19 and Guzman,20, 22 Hughes,11, 24 and Gim and Alfriend.23

This paper contains two types of analysis that are fundamental for providing formations that meet
MMS quality factor requirement while reducing or minimizing maneuver frequency: a sensitivity analysis
comparing effects of errors and perturbations on along track drift, and multi revolution design techniques
that investigate long term relative motion evolution. The sensitivity analysis is presented in three stages.
First we develop drift metrics that are a function of the semimajor axis error. Second, we show how semi-
major axis errors are affected by errors in navigation and control. Finally, we present the current error
models for MMS navigation and control and investigate the resulting SMA errors based on the latest data.
An analysis of the effects of the J2, Solar, Lunar, and SRP perturbations is performed by analyzing the
monodromy matrix for each perturbation integrated singly with the two body force.

We present several approaches to formation design and resulting formation solutions that simultaneously
seek to satisfy science and stability constraints. The first approach optimizes the quality factor over 60
orbits to implicitly satisfy stability and science requirements. The second approach begins by optimizing
science return, while applying rigorous J2 invariance constraints. The resulting formations are remarkably
stable but do not meet the science requirements for the nominal mission. Next, we present several partial J2

invariance design methods that seek to reduce the negative effects of J2 while not completely removing them.
By applying these conditions during the design process we show that it is possible to decrease maneuver
frequency (neglecting errors) from once every 45 days to once every 70 days for Phase I.

III. SENSITIVITY ANALYSIS

Understanding orbital sensitivities to error sources and perturbations is vital to design relative orbits
that have good stability properties and require infrequent orbit correction maneuvers. For MMS, orbital
maneuvers interrupt science measurements and are costly from an operations perspective. Reducing maneu-
ver frequency is a design goal with a mean time between maneuvers of about two weeks. Errors in navigation
and control, as well as orbital perturbations, prevent perfectly periodic orbit designs that would require no
maneuvers to maintain a given geometry. We assume that error sources can be evaluated by comparing the
resulting SMA errors, δa, due to manever magnitude, direction, and timing errors. We present several along
track drift metrics in terms of the relative SMA difference between two orbits. Next, we present relations
that describe how δa depends on different maneuver error sources. Finally, we present error models based
on the latest data and quantify the expected SMA errors for different phases of the MMS mission.

The effects of perturbations on relative motion can be quantified by investigating the monodromy matrix
at positions of interest in the orbit. We develop a metric that is based on the monodromy matrix evaluated at
apoapsis for several dynamics models, where each model contains the two body force and a single perturba-
tion. By comparing the magnitudes of the different monodromy matrices, we determine which perturbations
are dominant for the MMS mission.

A. Drift Metrics

There are many metrics that are useful in describing along track drift of spacecraft formations. We choose
the mean anomaly drift per orbit, δMo, true anomaly drift per orbit, δνo, along track drift per orbit, δso,
and the period difference between two orbits, δT . In this section, we develop the first-order relationship
between the in plane metrics as a function of the difference in SMA between two orbits. First, we develop
the general relationships valid at any point in the orbit, then we evaluate the relationships at apoapsis and
periapsis as these orbital locations are of key importance to MMS and represent lower and upper bounds
on sensitivity respectively. In later sections, we’ll develop relationships for how different errors affect δa and
then use the relationships developed in this section to determine how different error sources influence the
along track motion.

δνo and δso are functions of where they are evaluated in the orbit. To simplify our notation, let the true
anomaly at which we are evaluating the metric be νi, and fi be defined as

fi = f(νi + 2πk) k = 0,1,2... (1)
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(Note in this section i and k have a different meaning than in all other sections!). Expanding M to first
order in δa we find that δMo is given by

δMo ≈ −3π

a
δa (2)

where it is noted that δMo is independent of orbit location. Similarly, the first order period difference
between two orbits is given by13

δTo ≈ 3π

√

a

µ
δa (3)

To determine δνi we start with Kepler’s equation

M = E − e sinE (4)

and expand δE to first order in δM :

δEi ≈
a

ri
δMo (5)

Expanding ν to first order in δEi we find that

δνi ≈ η
a

ri
δEi (6)

where η =
√

1 − e2. Combining the results from Eqs. (5) and (6) we see that

δνi ≈ η

(

a

ri

)2

δMo (7)

Finally, substituting Eq. 2 we arrive at the desired expression for change in true anomaly per orbit, due to
an SMA difference δa.

δνi ≈ −3πη
a

r2i
δa (8)

We can use the Eq. 8 to calculate δs in terms of δa, starting with

δsi ≈ ri δνi (9)

and finally arrive at

δsi ≈ −3πη
a

ri
δa (10)

We now have general expressions for first order changes in δMo, δνi, and δsi in terms of δa. Inspecting
Eqs. (8) and (10) we see that the sensitivity of along track drift to SMA errors is highest at periapsis and
lowest at apoapsis, because ri appears in the denominator. In the next two subsections, we quantify the
drift rates expected for MMS by evaluating the metrics at apoapsis and periapsis for Phase I and II reference
orbits.

1. Metrics at Periapsis

We can evaluate the drift metrics at periapsis by substituting for ri using ri = a(1 − e). Simplifying the
expressions we obtain the following relationships:

δsp = −3π

√

1 + e

1 − e
δa (11)

δνp = −3π

a

√

1 + e

(1 − e)3
δa (12)

δMp =
−3π

a
δa (13)

Recognizing that
√

1 + e

1 − e
=

√

vp

va
=

√

ra
rp

(14)

4 of 28

American Institute of Aeronautics and Astronautics



we can formulate alternative relationships

δsp = −3π

√

vp

va
δa = −3π

√

ra
rp

δa (15)

δνp = −3π

rp

√

vp

va
δa = −3π

rp

√

ra
rp

δa‘ (16)

(17)

Equations 15 and 22 show that along track drift increases in sensitivity to SMA errors as eccentricity
increases. As eccentricity increases, so does the quantity ra/rp, which has a value of 10 for Phase I and
approximately 21 for Phase II.

Table 2 contains numerical values for the drift metrics evaluated for Phase I and II reference orbits. For
Phase I, a 10 m δa results in δsp = −290 m and δνp = −0.0022 degrees. For Phase II, a 10 m δa causes a
drift of δsp = −430 m.

Table 2. First Order In-plane Sensitivities at Periapsis due to δa

Phase dT/da (s/km) ds/da (km/km) dν/da (deg/km) dM/da (deg./km)

I -3.0628 -29.8037 -0.2231 -0.01283

II -4.31 -43.02 -0.32 -0.0065

2. Metrics at Apoapsis

Following the same procedures as above, except substituting ri = a(1 + e), and recognizing that

√

1 − e

1 + e
=

√

va

vp
=

√

rp
ra

(18)

we arrive at

δsa = −3π

√

1 − e

1 + e
δa (19)

δνa =
−3π

a

√

1 − e

(1 + e)3
(20)

δMa =
−3π

a
δa (21)

and the alternative formulations

δsp = −3π

√

va

vp
δa = −3π

√

rp
ra

δa (22)

δνp = −3π

rp

√

va

vp
δa = −3π

ra

√

rp
ra

δa (23)

(24)

The above equations show that the sensitivity of along track drift at apoapsis decreases as eccentricity
increases. This is true because at apoapsis drift is proportional to

√

rp/ra. We can divide Eq. 22 by Eq. 15
to examine the relative sensitivity of along track separation at apoapsis vs periapsis. We obtain

δsa

δsp
=
ra
rp

(25)

Evaluating the quantity ra/rp for Phase I, we see that the sensitivity of along track drift to δa is one order
of magnitude smaller at apoapsis and than at periapsis. Similarly, for Phase II, ra/rp ≈ 0.05.
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Table 3. First Order In-plane Sensitivities at Apoapsis due to δa

Phase dT/da (s/km) ds/da (km/km) dν/da (deg/km) dM/da (deg./km)

I -3.0628 -2.9804 -0.002231 -0.01282

II -4.32 -2.065 -0.000742 -0.00646

B. δa Due to Position and Velocity Errors

Position and velocity errors, δre and δve respectively, are caused by two primary sources: navigation errors,
which cause differences between the measured and true spacecraft states, and control errors. To determine
first order relationship between δa and the error sources δre and δve, we begin with the energy equation:

v2

2
− µ

r
= − µ

2a
(26)

Taking the first variation and solving for δa we obtain

δa = 2a2

(

v

µ
δve +

1

r2
δre

)

(27)

The equation shown above clearly shows that δa is proportional to velocity and inversely proportional to
distance. Comparing the terms v/µ and 1/r2 we can quantitatively evaluate the relative sensitivity to δre
and δve. Define the quantity γ as

γ =
v/µ

1/r2
=
vr2

µ
(28)

Table 4 contains the value of γ evaluated at apoapsis and periapsis of Phase I and II orbits. We conclude
that δa is three to four orders of magnitude more sensitive to errors in velocity than errors in position
and that this is consistent for both phases of MMS, and for all orbital locations. Due to the extreme

Table 4. Sensitivity Parameter, γ, at Various Orbital Positions δve and δvr

Phase Periapsis Apoapsis

I 1.4e3 1.4e4

II 1.5e3 3.1e4

sensitivity of SMA errors to errors in velocity magnitude, in Fig. 1 we plot SMA errors due to a range of
velocity magnitude error and location of the maneuver in the orbit. The left-hand plot is for Phase I and
the right-hand plot is for Phase II. In both plots, the independent variable is the location of the maneuver,
the contour lines are velocity magnitude error, and the dependent variable is SMA error. We have plotted
contours of velocity error magnitude ranging from 0.1 cm/s to 10 cm/s. A maneuver performed at apoapsis
with a 2.5 mm/s error results in about 22 m of SMA error in Phase I and 40 m of SMA error in Phase II.

C. δa Due to Maneuver Timing Errors

Maneuver timing errors are driven by two primary sources: navigation errors that lead to maneuvers per-
formed at off-nominal locations, and spin phase issues that prohibit maneuvers from being performed until
the proper spin phase is achieved. In this section, we derive the relationship between semimajor axis error
and error in the location of a commanded maneuver.

To determine how errors in maneuver timing affect the semimajor axis, we begin with the relationship
that describes first order changes in SMA, ∆a, due to an ideal maneuver. From Gauss’ equations, we can
write

∆a =
2

n
√

1 − e2

(

e sin νδvr +
p

r
δvt

)

(29)

We require expressions for δvr and δvt in terms of the maneuver timing error, δt. Consider two error
scenarios where in each case it is assumed that the desired ∆v is in the orbital velocity direction at time t
and the magnitudes of the desired and actual maneuvers are the same and defined as ∆v. For the first case,
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Figure 1. Along track Drift (per orbit) due to Maintenance Maneuver Magnitude Error

assume that the maneuver is actually performed at t + δt, but the maneuver is in the velocity direction of
the orbit at time t+ δt. In this case, the expression for the maneuver components are

δvr = ∆v sinφ(t + δt)

δvt = ∆v cosφ(t+ δt) (30)

A second and more physically realistic case is that the maneuver is performed in the desired direction,
but at t + δt. The result is that the maneuver is not in the instantaneous velocity direction at t + δt and
will be less efficient. Numerical and analytic study has shown that for regions where the velocity direction
does not change significantly over δt, that model 1 and model 2 provide nearly equivalent results. In the
region of periapsis, the velocity direction varies enough to cause models 1 and 2 to differ in the resulting δa
prediction. In this work, we only investigate the region near apoapsis and use the model defined by Eqs. 30.

To determine the error in SMA due to the maneuver error, we substitute Eqs. 30 into Eq. (29) and
expand using

δa =
∂∆a

∂ν
δν +

1

2

∂2∆a

∂ν2
δν2 (31)

The expansion is taken to second order because the first order terms are identically zero at apogee as we will
see shortly. Before taking the derivatives in Eq. (31), we need expressions for r, v, cosφ, and sinφ in terms
of ν. These expressions are:31

cosφ =
1 + e cos ν√

1 + 2e cos ν + e2
(32)

sinφ =
e sin ν√

1 + 2e cos ν + e2
; (33)

Expressing r and v in terms of ν we have

r =
a(1 − e2)

1 + e cos ν
(34)

v =

√

µ

r

(

2 − 1 − e2

1 + e cos ν

)

(35)

Finally, we assume

δν =
v

r
cosφ δt (36)
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By taking the required derivatives, substituting, and simplifying, we arrive at the relation:

δa = −2
v sinφ cosφ

nηr
∆vδt− v2e (cos ν + e)

nηp2
cos4 φ∆vδt2 (37)

Figure 2 shows the resulting δa for a 1 m/s maneuver performed between 160◦ and 200◦ true anomaly.
The maneuver timing error is assumed to be 5 seconds to account for the worst case spin phase alignment.
In the figure, analytic results are presented along with numerical results for both models discussed above.
There is excellent agreement between the theory and numerical simulations. We see that SMA errors due
to the worst case maintenance maneuver of 1 m/s are only a few meters. The worst case SMA errors for
maneuver timing are better than optimistic ∆v magnitude error estimates as we’ll see in a later section.
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δ 
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Figure 2. SMA Error for 1 m/s Maintenance Maneuver with 5 s Timing Error

The theoretical sensitivity analysis presented above allows us to determine which error sources drive
formation instability. This information is used to understand the design space and to derive accuracy
requirements for spacecraft subsystems such as the propulsion or attitude control system. In the next few
sections, we present error models that describe the expected statistical behavior of the various error sources
based on spacecraft subsystem performance and requirements.

D. MMS Maneuver Magnitude Error Model

Understanding the expected in-flight statistical behavior of the various error sources is fundamental to
determining expected along track drift behavior and setting practical limits on design algorithms. Below we
present statistical models for expected errors in maneuver magnitude and direction, as well as navigation
errors. We begin with the maneuver magnitude error model which is based on the following requirement:
The standard deviation of the orbit control error must be ≤ 1% of the ∆v or 1mm/s, whichever is greater.

The mathematical algorithm to simulate random maneuver errors based on the above requirement, given
a desired ∆v, is as follows:

∆v′ = max{1mm/s,
∆v

100
} (38)

∆ve = ǫn∆v′ (39)

where ǫn is a randomly selected dimensionless value from a zero mean, 1 sigma normal distribution.
The model presented above is used in Monte Carlo error analysis, and to investigate the expected SMA

errors. Figure 3 contains a histogram of δa errors created using randomly generated ∆v errors using the
model above. The commanded maneuvers were generated by sampling a uniform distribution between zero
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and 10 cm/s. The maneuver location was assumed to be 160◦ true anomaly. The mean of the absolute
value of the distribution is 13.6 meters, with a standard deviation of 10.5 m. The lower limit of 1 mm/s
(1σ) maneuver error results in about 17 m of SMA error in Phase I for maneuvers performed at 160◦ true
anomaly.
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Figure 3. SMA Errors due to Randomly Generated (uniform distribution) 10 cm/s Maneuvers

E. MMS Maneuver Direction Error Model

Directional maneuver errors must be within 3◦ (3σ) of the commanded maneuver direction. We develop
the error model by initially assuming an intermediate delta v vector, ∆v′, with the desired magnitude but
aligned with the inertial ẑ axis. We add directional errors to ∆v′ and then perform a rotation to align the
ẑ axis with the desired ∆v vector. We perform much of the work in the spherical coordinate system as it is
intuitive for developing errors for this model. Errors in ψ, where ψ is shown in Fig. 4 , are assumed to be
uniformly distributed and are generated using:

ψ = 2πǫu (40)

φ

ψ

ẑ

∆v′

∆v

Figure 4. Geometry of Intermediate Vectors for Maneuver Direction Error

where ǫu is sampled from a uniform distribution between zero and one. The declination error model
assumes a normal distribution for declination φ, where φ is defined in Fig. 4. Random values for φ are
generated using

φ =
ǫn
σφ

π

180
; (41)
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where σφ = 3 and ǫn is sampled from a 1σ, zero mean normal distribution. We construct ∆v′ using

∆v′ = ‖∆v‖







sinφ cosψ

sinφ sinψ

cosφ






(42)

The rotation matrix to rotate the desired v to align with the ẑ axis is calculated using

ẑ = [0 0 1]T (43)

a = ẑ × ∆v̂s (44)

Θ = cos−1(ẑ · v̂s) (45)

R = cosΘ ∗ I3 + (1 − cosΘ)ââT − â× sin Θ; (46)

Finally, we calculate the ∆v with errors as

∆ve = RT ∆v′; (47)

Fig. 5 contains a histogram of random SMA errors for a randomly generated set of maneuver direction
errors. The commanded maneuvers were generated by sampling a uniform distribution between zero and 10
cm/s for the magnitude, and were uniformly distributed in direction. The maneuver location was assumed
to be 160◦ true anomaly. The mean of the absolute value of the distribution is 1.75 meters, with a standard
deviation of 2.5 m. Comparing the SMA errors in Fig. 5 with those in Fig. 3, and the statistics presented for
each case, we see that for the same maneuver magnitude, the directional error contribution to SMA error is
about one to two orders of magnitude less than contribution from maneuver magnitude error.
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Figure 5. SMA Errors due to Randomly Generated 10 cm/s Maneuvers

F. MMS Navigation Error Model

A rigorous discussion of the MMS navigation system and navigation error analysis is beyond the scope of
this work. For a more detailed discussion see Kelbel26 et al., Gramling27 et al., Long30 et al., Long29 et al.
and Kelbel28 et al.. In brief, the navigation system for MMS will use GPS and cross link measurements. The
cross link measurements will improve relative navigation solutions and tend to decrease the relative error in
semimajor axis estimates. Hence, the relatively large absolute errors are common across all orbits and don’t
contribute to relative drift which is driven by relative semimajor axis errors.

Preliminary navigation analysis was performed by Carpenter25 who estimated absolute and relative posi-
tion and velocity errors at two key orbit locations: apoapsis, and 1 hour after periapsis passage. To generate
the statistics needed for performance assessment, an entire maneuver sequence was simulated many times.
Table 5 lists the specific error estimates for Phase I. These are derived from the most recent analysis of a
maintenance sequence for a 60 km formation, by folding 15 definitive orbits over the anomalistic period of
the MMS orbit, and computing RMS errors at apoapsis and one hour past periapsis. The data listed are
also averaged over the MMS spacecraft. Table 6 lists the specific error estimates for Phase II. These were
computed in a similar fashion to the Phase I data, but with a 10 km nominal separation, and less data.
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Table 5. Recommended Phase 1 Navigation Parameters

Parameter Value(s) Units

1-σR, I, C apoapsis navigation errors

Absolute position 50, 10, 10 m

Absolute velocity 3, 0.2, 0.5 mm/s

Relative position 1, 3, 2 m

Relative velocity 0.1, 0.1, 0.1 mm/s

1-σR, I, C post-periapsis nav error

Absolute position 1, 3, 10 m

Absolute velocity 0.4, 0.8, 0.2 mm/s

Relative position 1, 1, 2 m

Relative velocity 0.05, 0.3, 0.4 mm/s

Time after periapsis to plan

second maneuver 01:00 HH:MM

Table 6. Recommended Phase 2 Navigation Parameters

Parameter Value(s) Units

1-σR, I, C apoapsis navigation errors

Absolute position 20, 50, 20 m

Absolute velocity 0.3, 0.08, 0.07 mm/s

Relative position 20, 50, 10 m

Relative velocity 0.1, 0.08, 0.05 mm/s

1-σR, I, C post-periapsis nav error

Absolute position 1, 4, 3 m

Absolute velocity 0.8, 1, 0.8 mm/s

Relative position 4, 4, 0.5 m

Relative velocity 1, 2, 0.2 mm/s

Time after periapsis to plan 2nd maneuver 01:00 HH:MM
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Tables 5 and 6 show that in general the relative velocity errors, which are the primary driver of relative
semimajor axis errors, are larger at periapsis than at apoapsis. At apoapsis of Phase I and II, the relative
velocity errors are on the order of .2 mm/s and .1 mm/s respectively.

Figures 6 and 7 contain histograms illustrating absolute and relative semimajor axis errors created
using the error models described in Tables 5 and 6. The absolute errors for both Phases I and II are on the
order of 100 m (3 σ). The relative SMA values are about one order of magnitude smaller than the absolute
semimajor axis errors and are about 3 m (3 σ) and 6 m (3 σ) for Phase I and II respectively.
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Figure 6. Phase I Absolute and Relative SMA Errors from Navigation Solution
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Figure 7. Phase II Absolute and Relative SMA Errors from Navigation Solution

G. Perturbations

Orbital perturbations are another source of formation degradation in addition to the errors discussed above.
Quantifying the effects of orbital perturbations on formation degradation is a challenging problem for several
reasons: Ω, ω, and M(t0) are not currently known, general theories for perturbation modelling for some
perturbations (such as Lunar and Solar perturbations) are complex and do not always provide general
insight, and the effects of perturbations on relative motion depend upon the relative initial conditions of two
orbits, with are not rigorously known at this time. However, we can gain substantial insight into the effect
of perturbations using linear theory and that is the approach presented here.
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We develop a metric that describes the relative effects of a perturbation compared to that of the Earth
point-mass model. The metric uses the monodromy matrix to determine the worst-case contribution for
individual perturbations from J2, Sun, Moon, and SRP. We then compare the worst case estimates to
determine the relative effects of each perturbation.

Begin by defining the orbit state vector, x as

x =
[

rT vT
]T

= [x y z ẋ ẏ ż ]
T

(48)

The first order change in x with respect to a reference orbit can be written as33

∆x(t) = Φ(T + to, to)∆x(to) (49)

where
Φ̇ = AΦ (50)

and

A =
∂ẋ

∂x
=









∂ṙ

∂r

∂ṙ

∂v

∂v̇

∂r

∂v̇

∂v









(51)

Consider two systems, one which includes only the Earth point mass acceleration with a reference orbit x̂tb,
and another that contains the Earth point mass and J2 with a reference orbit x̂J2 as illustrated in Fig. 8 .
The equations of motion for the reference orbits are

ẍtb = − µ

r3
r (52)

ẍJ2 = − µ

r3
r +

1

m
fJ2 (53)

We can write the first order equation for ∆x due to the relative initial conditions, ∆xo, as

∆xtb(T + to) = Φtb(T + to, to)∆x(to) (54)

∆xJ2(T + to) = ΦJ2(T + to, to)∆x(to) (55)

where ∆xtb(T + to) and ∆xJ2(T + to) are defined as shown in Fig. 8 and Φtb and ΦJ2 are found by solving
Eq. (50) using the dynamics in Eqs. (52) and (53) respectively.

∆xtb(t+ T )

∆xJ2(t+ T )

x̂J2

x̂tb

Figure 8. Illustration of Linear Propagation Using Different Dynamic Models

Now we define the relative change in final conditions due to J2, δxJ2, as

δxJ2 = ∆xJ2(T + to) − ∆xtb(T + to) (56)

We can obviously rewrite the above equation

δxJ2 = [ΦJ2(T + to, to) − Φtb(T + to, to)]x(to) (57)
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The term ΦJ2 −Φtb contains fundamental information on how J2 influences relative motion. We can define
a single metric that describes how the J2 perturbation compared to the two body force by defining

PJ2 = 100 · ‖ΦJ2(T + to, to) − Φtb(T + to, to)‖
‖Φtb(T + to, to)‖

(58)

Similarly, we can define metrics for lunar, solar, and SRP perturbations respectively as

Pm = 100 · ‖Φm(T + to, to) − Φtb(T + to, to)‖
‖Φtb(T + to, to)‖

(59)

Ps = 100 · ‖ΦJ2(T + to, to) − Φtb(T + to, to)‖
‖Φtb(T + to, to)‖

(60)

PSRP = 100 · ‖ΦSRP (T + to, to) − Φtb(T + to, to)‖
‖Φtb(T + to, to)‖

(61)

Equations (58) - (61) require a reference orbit that must be integrated simultaneously with the appro-
priate STM in order to evaluate the metric. At the time of this writing, the complete reference orbit is
not known: we know a, e and i, but do not know Ω, ω, and ν(to). To determine the worst case con-
tribution from each perturbation, we performed a parametric scan over the initial conditions such that
Ω = (0◦, 10◦, 20◦, 30◦, ....350◦), and ω = (0◦, 10◦, 20◦, 30◦, ....350◦). For each unique pair of Ω and ω we
evaluated the metrics in Eqs. 59-61 by assuming ν(to) = 180◦ and to = 01 Jan 2014 00:00:00.000 UTC.

Tables 7 and 8 contain statistics for each metric based on the data from the parametric scan over Ω and
ω. The maximum singular value norm was used to evaluate the metrics. For Phase I, the mean value of PJ2

is 1.9 and PJ2 varies little with initial conditions due to the fact that the secular contribution from J2 is
independent of Ω, ω, and ν(to). The maximum value of PJ2 is about one order of magnitude larger than the
maximum value of Pm, yet the minimum value of PJ2 is two orders of magnitude larger than the minimum
value of Pm. This data allows us to conclude that for Phase I, J2 is the dominant perturbation for any
reference orbit geometry.

Table 8 contains the perturbation metrics for Phase II. The maximum value of PJ2 is 6.1 and the
maximum value of Pm is 3.5. This data illustrates that for at least certain reference orbit geometries the
lunar influence on relative motion is on the same order as that of J2. However, the minimum value of Pm

is about one order of magnitude smaller than the any value of PJ2. The Moon’s orbital motion ensures the
relative geometry between the reference orbit and the Moon, for any particular set of initial conditions, will
not be maintained for more than a few days. Hence, J2 is still the dominant perturbation for Phase II most
of the lunar orbit period. It is important to note that for certain reference orbits geometries, once per lunar
orbit period the lunar perturbation can have a significant influence on relative motion. Furthermore, this
analysis does not include SRP sensitivity to differences in ballistic coefficient which will likely be a larger
contribution than those due to relative position differences.

Table 7. Perturbation Metric Statistics for Phase 1

OE PJ2
Pm Ps PSRP

max 2.1 0.18 0.055 1.2e-4

min 1.7 0.040 0.016 4.1e-5

mean 1.9 0.093 0.034 7.9e-5

σ 0.14 0.031 0.010 2.17e-5

It seems counterintuitive at first that J2 has a larger influence on relative motion in Phase II than in
Phase I. This can be explained by the physics and examining Table 9. From the physics perspective, both
Phase I and II have the same periapsis radius. At periapsis of Phase I the orbital speed is 9.73 km/s where in
Phase II it is 9.97 km/s which is only a 2.5% difference. These two facts suggest that the two orbits may have
a similar orbital shape and evolution in the region of periapsis. In Fig. 9 a time history of the radius for a
Phase I and II reference orbits is shown. At time zero, both orbits are at true anomaly of 270◦. Propagation
was performed until the Phase II orbit was at a true anomaly of 90◦. By inspecting the plot we see that
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Table 8. Perturbation Metric Statistics for Phase 2

OE PJ2
Pm Ps PSRP

max 6.1 3.5 0.75 6.9e-4

min 4.9 0.63 0.26 3.2e-5

mean 5.5 1.4 0.50 5.1e-5

σ 0.4 0.6 0.12 1.1e-5

both spacecraft reach a true anomaly of 90◦ at nearly the same time, and they have nearly the same radius
vs. time history. So, in the near-Earth region of the orbit, both Phases I and II have a similar sampling of
the J2 perturbation. The result is that at each Periapsis passage, the J2 shifts each orbit through some ∆Ω,
∆ω, and ∆M and these amounts are nearly equal for both Phase I and II orbits as verified by Table 9. If
the total shift in these angles is called α, then at apoapsis, the resulting position change due to J2 is on the
order of αra. Because ra in Phase II is twice that of Phase I, we see an increase in sensitivity to J2 in Phase
II when compared to Phase I.
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Figure 9. Radius vs Time for Phase I and II reference Orbits for 270◦ ≤ ν ≤ 90◦

IV. FORMATION DESIGN

In the presence of real-world perturbations and dynamics, all formations for MMS will be unstable
according to classical definitions of stability. Yet through careful design considering perturbations we can
improve the long term evolutionary properties of formations (neglecting error sources). We identified in the
previous section that J2 is the dominant perturbation for MMS formations. Below we investigate several
design strategies to eliminate or reduce the effects of J2 on formation evolution. During this discussion we’ll
use the terminology “more stable” which we define here: if one formation, in the absence of control, satisfies
the quality factor requirement for a longer period of time than another, that formation is said to be more
stable.

The objectives of the formation design approach are to provide formations that meet quality and close
approach requirements, and that also meet maneuver frequency requirements. There are countless formations
that meet science requirements and close approach requirements. However, meeting the maneuver frequency
requirements is a more difficult design problem. A formation maneuver occurs when any of three conditions
occur:

• the quality factor requirement is not satisfied
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• an unacceptable close approach is predicted

• a new tetrahedron scale size is desired.

We’ll consider the first two conditions, as they are conditions we wish to avoid through careful orbit design.
A nominal formation design strategy was discussed by Hughes11 which optimizes a science metric over one
Keplerian orbit subject to a simple periodicity constraint and the close approach constraints. The approach
reduces maneuver frequency by maximizing the amount by which we exceed the science requirement, and
hence increasing the amount of time before the inherent instability of a formation causes a degradation in
the science metric to the point of a requirements violation.

Below we investigate several extensions to the nominal design algorithm to improve the stability properties
of a formation by eliminating or mitigating the effects of J2. We begin with a brute force numerical approach
that contains no semimajor axis constraints and satisfies periodicity requirements implicitly by optimizing
the quality factor over 60 orbit revolutions. Next we investigate the sensitivities of relative drifts due to J2 to
better understand what causes formation degradation. Four design approaches are presented: a rigorously
invariant J2 approach which eliminates all drifts due to J2, a near J2 invariant approach that ensures the
dominant effects of J2 are removed, a three-spacecraft invariant approach with a fourth “rover” spacecraft,
and a formation with no relative argument of latitude drift based on the work by Schaub9 and Alfriend.7

The long term evolutionary properties of all orbits are investigated using a dynamics model that includes
Earth 4x4 gravity, Solar and Lunar perturbations, and SRP.

A. Nominal Design

Below we present a high level description of the nominal design algorithm which is presented in rigorous
detail in Hughes.11 The algorithm is cast as a Nonlinear Programming Problem (NLP) defined as

min
X

J

Subject to

ci ≥ bi (i ∈ I)

ci = bi (i ∈ E) (62)

where X is the vector of optimization variables, I and E are the sets of inequality and equality constraints
respectively, and ci are nonlinear functions of X. There are numerous methods for solving the NLP problem.32

We choose the optimization variables to be the initial cartesian states of the MMS orbits:

Xo = [xT
o1 xT

o2 xT
o3 xT

o4]
T (63)

To complete the problem statement, we must develop a cost function in terms of the formation quality factor,
and define constraints that ensure periodicity and the close approach constraints are satisfied. The NLP
problem for the nominal design is defined as

min
X

J

Subject to

aℓ = ar (ℓ ∈ [1, 2, 3, 4])

sik >= 6km when(rik ≤ 4Re) (64)

The equations aℓ = ar are 4 equality constraints that ensure Keplerian periodicity. The sij >= 6 are
inequality constraints that are applied at all times tk when rik = ri(tk) ≤ 6Re.

To define explicit equations for the cost and constraint functions, define the ith unique side vector of the
formation, si, as the vector from the ℓth to the jth spacecraft

si(t) = rj(t) − rℓ(t) (65)

The subscripts j and ℓ can be chosen arbitrarily as long as for each value of i there is a given j, ℓ pair,
the pairs result in a unique side, 1 ≤ j ≤ n and 1 ≤ ℓ ≤ n, and the chosen definition is used consistently
throughout the implementation. The side lengths si, are defined as

si(t) =
(

si(t)
T si(t)

)1/2
(66)
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We can calculate the volume of the tetrahedron at the kth ephemeris point using

Va =
1

6
|s1k · (s2k × s3k)| (67)

where Va stands for the volume of the actual tetrahedron formed by the spacecraft, as opposed to the desired
volume which we discuss below. The side lengths can be used to calculate the average side length, L∗, using

L∗ =
1

6
(s1k + s2k + s3k + s4k + s5k + s6k) (68)

at time tk. Paschmann21 and Guzman20 present a method for evaluating how close a tetrahedron is to being
a regular tetrahedron by comparing the volume of the actual tetrahedron, Va, with the volume of a regular
tetrahedron, Vr, with side lengths equal to the average side length of the actual tetrahedron. The volume of
a regular tetrahedron of side length L can be calculated using

Vr =

√
2

12
L3 (69)

Using Va and Vr, we write the instantaneous volumetric performance metric, Qv, as

Qk
v =

V k
a

V k
r

=

√
2

L∗
3
|s1k · (s2k × s3k)| (70)

where the superscripts “k” indicate values at the kth point. Qv has the useful property: 0 ≤ Qv ≤ 1.
However, it does not take into account the actual size of the tetrahedron. We use a simple polynomial
function, Qs, that has the properties below, to take into account the size of a tetrahedron. The constants
ℓ1, ℓ2, ℓ3, and ℓ4 are used to change the shape of the function. A plot of Qs for a 10 km tetrahedron, with
ℓ1 = 4, ℓ2 = 6, ℓ3 = 18, and ℓ4 = 25, is shown in Fig. 10. The important property of Qs, is that it is zero for
tetrahedrons with an average side length of less than 4 km or greater than 25 km. Between the values of 6
km and 18 km, Qs is equal to one.

Qk
s(L∗) =



























0 L∗ < ℓl

(L∗ − ℓ1)
2(L∗ + ℓ1 − 2ℓ2)

2/(ℓ2 − ℓ1)
4 ℓl < L∗ < ℓ2

1 ℓ2 < L∗ < ℓ3

(L∗ − ℓ4)
2(L∗ − 2ℓ3 + ℓ4)

2/(ℓ4 − ℓ3)
4 ℓ3 < L∗ < ℓ4

0 L∗ > ℓ4

(71)

The MMS instantaneous formation quality factor is now written as
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Figure 10. Plot of Qs(L∗)

Qk = Qk
s(L∗)Qk

v (72)
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We need to develop a cost function that evaluates the quality of a formation in the RoI. A continuous-time
form can be expressed as

J =

∫ tf

to

(1 −Qk)2dt

where to is the time when the reference spacecraft is at a true anomaly of 160◦, and tf is the time when the
reference spacecraft is at a true anomaly of 200◦. However, we can’t evaluate this integral exactly, so we
have to approximate it. We use a simple trapezoid rule, as opposed to a complicated quadrature rule, where

J ≈ C

nk
∑

k=1

(1 −Qk
vQ

k
s)2∆tk = C

nk
∑

k=1















1 −
√

2
|s1k · (s2k × s3k)|
(

1

6

6
∑

i=1

sik

)3
Qk

s















2

∆tk (73)

In addition to minimizing the cost function above, we also must satisfy the nonlinear constraints that the
semimajor axes of all spacecraft in formation are equal. We can write this as

ap =
1

2

rop
−
v2

op

µ

= ad (74)

where ap is the semimajor axis of the pth spacecraft, ad is the desired semimajor axis of all spacecraft, rop

is the magnitude of the initial position vector of the pth spacecraft, and vop is the magnitude of the initial
velocity vector of the pth spacecraft.

Solutions to the nominal NLP described in this section have characteristics shown in Fig. 11.11, 18 A 10
km tetrahedron was used to generate the plots. The upper vertical bar and dashed lines pairs in each subplot
define the RoI. The quality factor is greater than 0.9 for all points in the RoI, greatly exceeding requirements.
The side lengths are plotted vs. time in the lower subplot and they are all near 10 km in the RoI which is a
requirement for a near-regular tetrahedron formation. In the region around periapsis, the formation deforms
dramatically, and some side lengths grow by as much as an order of magnitude. This growth is consistent
for larger formations where 400 km tetrahedrons sometimes grow to 4000 km at periapsis.

B. Multi-Revolution Optimization

One approach to long-term formation design is to optimize the cost function over many orbits, including
relevant perturbations in the dynamics model. In this case, the SMA constraints are removed from the
nominal NLP described in Eqs. (62) because the periodicity constraints are satisfied implicitly by optimizing
over many orbits (≈ 60). The downside to this approach is that it is computationally intensive to propagate
four orbits for sixty revolutions for each cost function evaluation. The NLP for a multi orbit method can be
expressed as

min
X

J

Subject to

Q̄1 ≥ 0.92 (75)

Here we optimize the quality factor over 60 orbits, subject to the constraint that the mean quality factor
during the first RoI pass is greater than 0.92. This constraint is applied to reduce the computational time
required to find a solution for long term orbit solutions. Solutions to the NLP in Eq. (75) without the
Q̄1 ≥ 0.92 constraint tend to have a max(Q̄i) = .93 near the center of the optimization time span. By
applying the Q̄ constraint, we can investigate the long term relative motion properties but only propagate
for topt/2 instead of topt where topt is the maximum time a formation can meet quality factor requirements
without maintenance maneuver.

A solution to Eqs. 75 is illustrated in Fig. 14 and has considerably improved stability properties over
the nominal solution. The nominal solution breaks the quality factor requirement at about 48 days, where
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Figure 11. Evolution of Nominal Formation

the multi-rev solution breaks requirements at about 72 days, an improvement of about 50%. Examining the
states in Table 18 we see that the δa values for this solution are on the order of a few meters.

We can draw some important conclusions from the multi-rev design method. It is possible, neglecting
errors, to dramatically improve the long term stability properties of a formation beyond what is provided
by the nominal design algorithm. However, it is not clear if the formations are achievable to the required
accuracy to realize this improvement in an operational setting. Monte Carlo analysis is presented in a later
section to address this question. Furthermore, it is desirable to find alternative design approaches that use a
less computationally intensive process yet still provide formations with improved stability properties. This
is the subject of the next few sections.

C. J2 Effects

Before investigating how to eliminate or mitigate the effects of the J2 perturbation on formation evolution,
we must investigate what aspects of the MMS orbits the J2 perturbation effects, and determine the driving
parameters and sensitivities. It is well known that only Ω, ω, and M experience secular variations due to J2

and these effects are well documented in Vallado.31 In this section, we’ll investigate the drifts in Ω, ω, and
M for MMS orbits, and look at how sensitive those drift rates are to variations in the parameters that cause
the drift rates. This understanding is then used in later sections to develop design techniques to mitigate
the adverse effects of J2.

The relations that describe the drift rates in Ω, ω, and M are shown in Eqs. (76 - 78)

Ṁ = n− 3

4
J2

(

Re

aη2

)2

nη
(

3 sin2 i− 2
)

(76)

ω̇ =
3

4
J2

(

Re

aη2

)2

n
(

4 − 5 sin2(i)
)

(77)

Ω̇ = −3

2
J2

(

Re

aη2

)2

n cos i (78)
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where
η =

√

1 − e2 (79)

the above relations have been averaged over one orbit, hence they show the drift per orbit for each quantity.
The drift rates are only functions of a, e, and i, which are well known at this stage in the MMS design
process and are documented in Table 1. Evaluating Eqs. (76 - 78) for MMS Phase 1 and 2 reference orbits
we arrive at the drift rates shown in Table 9. From the data we can draw a few conclusions:

Table 9. Phase 1: Absolute Orbit Drift Rates Due to J2

Parameter Phase I Phase II

Ṁ (deg/orbit) 0.0460 0.0304

ω̇ (deg/orbit) 0.1744 0.1583

Ω̇ (deg/orbit) -0.1075 -0.0975

• Absolute drifts for MMS orbits are slightly larger in Phase I , but are on the same order for both
Phases.

• Under the influence of J2, ω will vary about 5.3 degrees per month in phase I, and Ω will vary about
3.3 degrees per month in Phase II. (Lunar-solar perturbations may change this rate depending upon
the final orbit geometry)

• Under the influence of J2, Ω will vary about 1.6 degrees per month in Phase I, and Ω will vary about
1 degree per month in Phase II. (Lunar-solar perturbations may change this rate depending upon the
final orbit geometry)

Perhaps more importantly than the absolute drift of the reference orbits, is the relative drift of the
formation orbits due to variations in the parameters a, e, and i. We can investigate how the drift rates of
Ω, ω, and M are influenced by small changes in δa, δe, and δi by performing a Taylor series to first order.
For example,

Ω̇(a+ δa, e+ δe, i+ δi) = Ω̇(a, e, i) +
∂Ω̇

∂a

∣

∣

∣

∣

∣

a,e,i

δa+
∂ω̇

∂e

∣

∣

∣

∣

a,e,i

δe+
∂Ω̇

∂i

∣

∣

∣

∣

∣

a,e,i

δi (80)

Rewriting this we obtain

δΩ̇ =
∂Ω̇

∂a

∣

∣

∣

∣

∣

a,e,i

δa+
∂ω̇

∂e

∣

∣

∣

∣

a,e,i

δe+
∂Ω̇

∂i

∣

∣

∣

∣

∣

a,e,i

δi (81)

The partial derivatives in Eq. (81) are the first-order sensitivities of Ω̇ to variations in a, e, and i. We can
derive similar expansions for δω̇, and δṀ . Appendix 1 contains analytic expressions for the first derivatives
of Ω̇, ω̇, and Ṁ with respect to δa, δe, and δi. We have evaluated the partial derivatives using the reference
orbit values for Phase I and II and the results are are shown in Tables 10 and 11. We can draw some
important conclusions regarding the influences of J2 on relative orbital motion for MMS from this data:

• Drifts in Ω and ω due to J2, are orders of magnitude more sensitive to changes in eccentricity than
any other variable.

• Drifts in Ω and ω, due to J2, are between 3 and 6 orders of magnitude less sensitive to changes in a
than other variables.

• Drifts in Ω, ω, and M , due to J2, are of the same order for a given change in i.

The effects of J2 on MMS formations can be further investigated by looking at the formation evolution
for different reference orbits. As we raise radius of periapsis, we reduce the effects of J2. In Fig. 12 we show
the evolution of the mean quality factor per revolution, vs. orbit revolution number for four reference orbits.
The nominal formation design process was used to develop all formation solutions. A good approximation to
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Table 10. Phase 1: Sensitivity of Drift Rates w/r/t δa, δe, and δi

Condition ∂a (km) ∂e ∂i (deg.)

∂Ṁ (deg./orbit) -0.0128 0.342 -0.00155

∂ω̇ (deg./orbit) -1.45e-5 1.72 -0.00450

∂Ω̇ (deg./orbit) 8.94e-6 -1.06 0.00102

Table 11. Phase 2: Sensitivity of Drift Rates w/r/t δa, δe, and δi

Condition ∂a (km) ∂e ∂i (deg.)

∂Ṁ (deg./orbit) -0.0064 0.4741 -0.0010

∂ω̇ (deg./orbit) -6.6312e-006 3.2903 -0.0041

∂Ω̇ (deg./orbit) 4.0862e-006 -2.0275 0.0009

the quality factor requirement is that the mean quality factor in the RoI exceed 0.7. Using this metric, we see
that the nominal orbit design, employing a 1.2 x 12 Re orbit violates requirements at about 45 days (without
navigation or control errors) after initialization. A 1.5 x 12 Re orbit violates requirements at about 90 days,
and a 2.0 x 12 Re formation is still in near-regular configuration after 90 days. Note that a representative
Cluster II orbit remains nearly invariant over 90 revolutions which for Cluster II is over 1.5 years!
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Figure 12. Evolution of Mean Quality Factor for Different Reference Orbits

D. Rigorous J2 Invariance

Above we showed that the only Keplerian elements to experience secular growth due to the J2 perturbation
are Ω, ω, and M . Furthermore, the secular variations in these variables are only dependent upon a, e, and
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i. Hence, the conditions for rigorous J2 invariance are trivial to determine and are

δa = 0 (82)

δe = 0 (83)

δi = 0 (84)

While these conditions are trivial to determine, they are not trivial to apply during the orbit design
process. The conditions state, rather obviously, that for rigorous J2 invariance, all orbits must have the same
semimajor axis, eccentricity and inclination. The nominal formation design problem modified to satisfy the
rigorous J2 invariance conditions can be stated as

min
X

J

Subject to

ai − ar = 0 (i ∈ [1, 2, 3, 4])

ei − er = 0 (i ∈ [1, 2, 3, 4])

ii − ir = 0 (i ∈ [1, 2, 3, 4])

sik ≥ 6 km ( for rk < 5 Re) (85)

where ar is the reference semimajor axis and so on.
A solution to the optimal, rigorously J2 invariant problem defined by Eqs. 85 is shown in Table 14 in

Appendix 1. The solution is for a 10 km formation and is non-trivial to find as it was necessary to first solve
the problem without the close approach constraints, and then use this solution as the initial guess to the full
problem with the close approach constraints applied. In Table 14, indeed a, e, and i are equal for all orbits,
and so the relative motion is due solely to differential changes in Ω, ω, and ν.

Figure 13. J2 Invariant Formation

The quality factor evolution for a representative rigorously J2 invariant formation is shown in Fig. 13,
and a long term orbit propagation is shown in Fig. 14. The formation does not satisfy the quality factor
requirements: the quality factor exceeds 0.7 for only 61% of the time in the RoI. Investigating the stability
of this formation when propagated over many orbits, we see that it is very stable in the presence of J2. For
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a Cluster-like mission with a low periapsis where J2 effects are important and the RoI is not necessarily at
apoapsis but at two off-apoapsis regions, this formation may be an excellent solution. The formation does
not meet current MMS requirements and is included here to show that this design approach, while appealing
and possibly ideal for other missions, is not acceptable for MMS.

The primary reason that the rigorous J2 invariance conditions result in unsatisfactory formations is that
for orbits with equal eccentricities, and small inter-spacecraft separations at apoapsis, the necessary radial
separation to provide a regular tetrahedron cannot be achieved. For a three spacecraft option, such as a
possible formation de-scope or loss of a spacecraft, rigorously J2 invariant equilateral triangle formations
could be designed.

E. Near J2 Invariance

Above we showed that the relative eccentricity between two MMS orbits is the primary source of relative
secular drift due to J2 and that relative inclination has little effect. This is obvious by inspecting Tables 10
and 11. Because the relative inclination has little effect on relative drift, we can provide stable formations
by simply enforcing equality constraints on SMA and ECC, and allowing INC to vary for each orbit. We
define this methodology as near J2 invariant and the associated nonlinear programming problem is defined
as:

min
X

J

Subject to (86)

ai − ar = 0 (i ∈ [1, 2, 3, 4])

ei − er = 0 (i ∈ [1, 2, 3, 4])

sik ≥ 6 km ( for rIk < 5 Re ) (87)

Fig. 14 illustrates the evolution of a formation satisfying Eqs.(87). The mean quality factor per orbit is
about 0.73. The quality factor evolution for a single orbit is similar to that of the rigorously J2 invariant
solution: the quality factor is above 0.7 for only 66% of the time in the region of interest and so this formation
does not meet the formation quality factor requirement. As expected, the formation is remarkably stable
with a nearly constant value for the mean quality factor per RoI pass. Although this formation does not
meet quality factor requirements, it achieves a near regular tetrahedron at two locations in the RoI, and the
solution may be useful for other flight programs.

F. Rover Strategy: 3 Near Invariant Orbits

A variation on the near-invariant design approach is to relax the eccentricity constraint on one of the orbits,
allowing the orbit that is unconstrained in eccentricity to provide the necessary radial separation at apoapsis
to provide a near-regular tetrahedron. By allowing one orbit to have a different eccentricity, we avoid
the problem of a planar formation at apoapsis. We call this strategy the rover approach, because three
of the orbits will be near J2 invariant, while the fourth spacecraft, called the Rover, will require periodic
maintenance maneuvers. This approach simplifies the maintenance process because only a single spacecraft
will require deterministic maneuvers. We define the nonlinear programming problem for the Rover approach
as:

min
X

J

Subject to (88)

ai − ar = 0 (i ∈ [1, 2, 3, 4])

ei − er = 0 (i ∈ [1, 2, 3])

sik ≥ 6 km ( for rk < 5 Re ) (89)

Notice that the eccentricity equality constraints are only applied to three orbits. A solution satisfying the
Rover NLP is shown in 14. The stability properties are only slightly improved over the nominal design
approach. However, this formation may be considerably easier to maintain from an operational perspective.
Monte Carlo analysis must be performed to confirm this possibility. If we apply the zero along track drift
condition developed in the next section to the Rover formation, we see a dramatic improvement in stability.
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G. Zero Along-Track Drift

An alternative approach to satisfying numerical constraints in the design process is to develop a set of
analytic conditions that reduce the effects of J2 and apply the conditions to a solution developed using the
nominal design approach. One possible condition is based on the mean argument of latitude drift rate, θ̇,
based on the work by Schaub and Alfriend9 and Alfriend.7 The argument of latitude, θ = M +ω, has a drift
rate described by

θ̇ = Ṁ + ω̇ (90)

We can determine the difference in semimajor axes, δa, required to have a zero relative argument of latitude
drift for two nearby orbits from the Taylor series:

θ̇2 = θ̇1 +
∂θ̇

∂o

∣

∣

∣

∣

∣

or

δo (91)

where o = [ a e i ]T . For the case θ̇2 = θ̇1, we see that

[

∂θ̇

∂a

∂θ̇

∂e

∂θ̇

∂i

]

· [ δa δe δi]T = 0 (92)

The derivatives ∂θ̇/∂e and ∂θ̇/∂i can be determined from the derivatives in Appendix 1. We assume

∂θ

∂a
= −3

2

n

a
(93)

where we’ve neglected terms of O(J2) in this equation. This is good approximation because changes in
argument of latitude due to changes in semimajor axis are dominated by the resulting period change, and
not by J2 effects. Solving Eq. (92) for δa we obtain

δa = −∂a
∂θ̇

∂θ̇

∂i
δi− ∂a

∂θ̇

∂θ̇

∂e
δe (94)

∂a

∂θ̇

∂θ̇

∂i
=

1

2
J2

Re2

aη4
(3η + 5) sin 2i (95)

∂a

∂θ̇

∂θ̇

∂e
= −1

2
J2e

Re2

aη6

(

(−3η − 4) + (9η + 20) cos i2
)

(96)

Using the above conditions in the design process is trivial. We assume one spacecraft is the reference orbit
and calculate the relative eccentricity and inclination, δe and δi respectively, for a nearby orbit. We then use
Eqs .(94) - (96) to solve for the necessary relative semimajor axis difference δa and add the resulting value to
the semimajor axis for the nearby orbit. When applied to the nominal formation solution, we see a dramatic
improvement in stability as shown in Fig. 14. The nominal solution breaks requirements around 45 days,
while the nominal solution with the argument of latitude condition doesn’t break requirements until 65 days
(neglecting errors in both cases). Comparing the multi revolution optimization solution to the argument
of latitude condition solution, we see that the multi-revolution solution is more stable. However, the slight
increase in stability provided by the multi revolution optimization is probably not worth the considerable
increase in computation time.

V. Conclusions and Future Work

We presented a sensitivity study of formation drift due to semimajor axis errors and error models for
expected semimajor axis errors to navigation and control errors. According to the current models, errors in
maneuver magnitude are the dominant source of formation instability. A comparison of orbital perturbations
proved that for Phase I, J2 is the dominant perturbation. In Phase II, J2 is still the dominant perturbation
but for certain orbit geometries the Lunar perturbation is only the effect of the J2 perturbation.

Several design techniques were presented that seek to improve the long term stability properties of MMS
formations. Neglecting error sources, these techniques reduce maneuver frequency by a factor of 2. It is not
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Figure 14. Comparison of Design Techniques and Formation Evolution

clear at this time if the design techniques presented above are practical in the presence of navigation and
control errors. Expected semimajor axis errors are on the order of 60 m (3 σ) and could be greater depending
upon the interaction of different error sources. In Tables 12 and 13 are δa values to eliminate argument of
latitude drift for several formations in Phase I and II. These values were calculated by generating formations
using the nominal design method and then applying the conditions in Eqs .(94) - (94).

For 10 km formations, the δa values to eliminate along track drift are on the same order as expected
semimajor axis errors. The consequence is that navigation and control errors probably preclude much
improvement in formation stability even if sophisticated design techniques are employed. To be completely
conclusive we must perform Monte Carlo analysis which is a topic of future work. For larger formations
the δa to eliminate along track is larger than the expected maneuver magnitudes, especially for 400 km
formations. However, according to current requirements, 400 km formations only need to be maintained for
a total of 4 weeks out of the entire mission. While improvement in stability for these formations is useful, it
is not as critical as for smaller formations on the order of 25 km which must be maintained for many months.

Table 12. Representative δa Values for Phase I Formations

Formation δa2 (m) δa3 (m) δa4 (m)

10 (km) 11.0 31.2 7.78

60 (km) 21.5 129 96.2

400 (km) 127 912 620

Table 13. Representative δa Values for Phase II Formations

Formation δa2 (km) δa3 (km) δa4 (km)

10 (km) 25.0 49.5 21.3

60 (km) 117 232 99.9

400 (km) 685 1580 575
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Appendix 1

Derivatives of the mean drift rates Ω̇, ω̇, and Ṁ , resulting from J2, with respect to a, e, and i.

∂Ṁ

∂a
= −3

2

n

a
(97)

∂Ṁ

∂η
=

9

4
J2

(

Re

aη2

)2

n(3 sin2 i− 2) (98)

∂Ṁ

∂e
= −9

4
J2

(

R2
e

a2η5

)

ne(3 sin2 i− 2) (99)

∂Ṁ

∂i
= −9

4
J2

(

Re2

a2η3

)

n sin 2i (100)

∂ω̇

∂a
= −21

8
J2

Re2

a3η4
n
(

4 − 5 sin2 i
)

(101)

∂ω̇

∂η
= −3J2

(

Re2

a2η5

)

n
(

4 − 5 sin2 i
)

(102)

∂ω̇

∂e
= 3J2

(

Re2

a2η6

)

ne
(

4 − 5 sin2 i
)

(103)

∂ω̇

∂i
= −15

4
J2

(

Re2

a2η4

)

n sin 2i (104)

∂Ω̇

∂a
=

21

4
J2

Re2

a3η4
n cos(i) (105)

∂Ω̇

∂η
= 6J2

(

Re2

a2η5

)

n cos(i) (106)

∂Ω̇

∂e
= −6J2

(

Re2

a2η6

)

ne cos(i) (107)

∂Ω̇

∂i
=

3

2
J2

(

Re2

a2η4

)

n sin(i) (108)

Appendix 2

State for formations found using various design techniques.

Table 14. Classical Orbital Elements for Rigorously J2 Invariant Formation

S/C/ SMA (km) ECC INC (deg) RAAN (deg) AOP (deg) TA (deg)

MMS1 42095 0.81818181 28.500025 357.85147 298.23694 159.98301

MMS2 42095 0.81818181 28.500025 357.83711 298.23527 160.0025

MMS3 42095 0.81818181 28.500025 357.88161 298.19953 159.99965

MMS4 42095 0.81818181 28.500025 357.85098 298.23576 159.99682
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Table 15. Classical Orbital Elements for near J2 Invariant Formation

S/C/ SMA (km) ECC INC (deg) RAAN (deg) AOP (deg) TA (deg)

MMS1 42095 0.81818181 28.499995 357.85554 298.23341 159.98319

MMS2 42095 0.81818181 28.501166 357.85792 298.21527 160.00244

MMS3 42095 0.81818181 28.494749 357.85442 298.22705 159.99967

MMS4 42095 0.81818181 28.504167 357.85995 298.22567 159.99727

Table 16. Classical Orbital Elements for Rover Formation

S/C/ SMA (km) ECC INC (deg) RAAN (deg) AOP (deg) TA (deg)

MMS1 42095 0.81818181 28.502507 357.854049 298.22706 159.99459

MMS2 42095 0.81818181 28.50135 357.859987 298.20547 160.00611

MMS3 42095 0.81818181 28.493480 357.84903 298.22201 160.002931

MMS4 42095 0.818358 28.503524 357.837748 298.233208 160.013341

Table 17. Classical Orbital Elements for Nominal Formation

S/C/ SMA (km) ECC INC (deg) RAAN (deg) AOP (deg) TA (deg)

MMS1 42095 0.81818181 28.5 357.849953 298.228460 160

MMS2 42095 0.8180841 28.5004513 357.850639 298.215024 160.002062

MMS3 42095 0.8182753 28.5041593 357.844734 298.220912 160.015235

MMS4 42095 0.818147 28.5081564 357.856050 298.217060 160.000996

Table 18. Classical Orbital Elements for Multi Revolution Optimization Formation

S/C/ SMA (km) ECC INC (deg) RAAN (deg) AOP (deg) TA (deg)

MMS1 42095 0.81818181 28.5 357.849953 298.228460 160

MMS2 42094.946 0.817876 28.4992924 357.85475 298.203330 159.99301

MMS3 42095.008891 0.8182365 28.492486 357.84434 298.205174 160.024422

MMS4 42094.99791 0.81821 28.511210 357.861166 298.194060 160.019319
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