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A STABLE CLOCK ERROR MODEL USING
COUPLED FIRST- AND SECOND-ORDER

GAUSS-MARKOV PROCESSES

Russell Carpenter∗ and Taesul Lee†

Long data outages may occur in applications of global navigation
satellite system technology to orbit determination for missions that
spend significant fractions of their orbits above the navigation satel-
lite constellation(s). Current clock error models based on the random
walk idealization may not be suitable in these circumstances, since
the covariance of the clock errors may become large enough to over-
flow flight computer arithmetic. A model that is stable, but which
approximates the existing models over short time horizons is desir-
able. A coupled first- and second-order Gauss-Markov process is such
a model.

INTRODUCTION

According to Van Dierendonck,1 the Allan variance technique represents the power
spectral density, S(f), of a clock’s frequency fluctuation as a function of frequency by

S(f) = h2f
2 + h1f + h0 + h−1f

−1 + h−2f
−2 (1)

where h2 is the “white phase noise,” h1 is the “flicker phase noise,” h0 is the “white
frequency noise,” h−1 is the “flicker frequency noise,” and h−2 is the “random walk
frequency noise.” The random walk model developed in Brown and Hwang2 makes
use of the frequency noise terms only, i.e. h0, h−1, and h−2. These terms give rise
to asymptotes on an Allan variance plot, an example of which Figure 1 shows. The
white frequency noise asymptote is

√
h0/2τ , and dominates at small averaging times.

The flicker frequency noise asymptote is
√

(2 ln 2)h−1, and dominates at intermediate

averaging times. The random walk frequency noise asymptote is 2π
√
h−2τ/6, and

dominates at larger averaging times. Figure 1 also shows the Allan variance of the
random walk model developed in Ref. 2, and the Allan variance of a Gauss-Markov
model, discussed below (the appendix of this work specifies the random walk model).

As Figure 1 shows, the random walk model nicely approximates the asymptotic
Allan variance plot over all time scales, while avoiding certain model representation
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Figure 1 The Gauss-Markov model closely approximates the Al-
lan variance of the random walk model over a wide range of sample
times.
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Figure 2 The random walk model is unstable; the Gauss-Markov
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issues related to the flicker frequency noise.2 The possible difficulty with this model
is evident in Figure 2, i.e. the clock bias error envelope becomes larger than the di-
ameter of the earth within two days. Nominally, global navigation satellite system
receivers process measurements from four or more satellites at intervals on the order
of seconds, so the error growth Figure 2 shows does not occur. However, in a medium,
highly-elliptical, or geosynchronous Earth orbit mission, even nominal satellite visibil-
ity conditions may not permit rectification of the time bias estimate for long periods
of time. Allowing the uncertainty to continue to grow as Figure 2 shows appears
harmless enough, since a Kalman filter should be able to quickly re-converge to rea-
sonable uncertainty levels once visibility conditions permit additional measurement
processing. In fact, a very large covariance is somewhat desirable in such cases, if
the filter has a residual edit function that could be triggered by large residuals that
might occur at measurement re-acquisition.

As stated at the outset, the desirability of this approach will be negated if the
covariance becomes large enough to overflow the flight computer’s arithmetic, causing
the filter software to crash. Figure 2 indicates that, for the somewhat average clock
parameters simulated here, this condition probably would not occur for several days.
(This statement assumes the use a U − D factorized filter, which stores quantities
related to the square root of the covariance; this problem would be accentuated in
a filter storing the total covariance matrix.) Since the random walk model is much
simpler than the Gauss-Markov model, in most cases it may be adequate.

If on the other hand a requirement exists for a filter to operate through very
long outages, or if a filter is tuned or mechanized in such a way as to create the
possibility of covariance overflow, a coupled first- and second-order Gauss-Markov
model proposed herein may be used. As Figures 1 – 3 show, the model is stable,
reaching a specified steady-state value after a few hours, and it closely approximates
both the time histories and the Allan variances of the random walk model over shorter
time intervals. Note that we do not mean to imply that real clocks have bounded
error growth; we merely suggest that open-loop-stable error models may be more
suitable for navigation filters in some applications.

PROBLEM STATEMENT AND SOLUTION

The Gauss-Markov clock bias model proposed herein is a coupling of a first-order
Gauss-Markov (FOGM) process driving the bias state directly, and a second-order
Gauss-Markov (SOGM) process driving the bias state via integration of its direct
effect on the clock drift. Let b represent the clock bias, and d represent the clock
drift. Then, the continuous-time representation of the model is[

ḃ(t)

ḋ(t)

]
=

[
−1/τ 1
−ω2

n −2ζωn

] [
b(t)
d(t)

]
+

[
w1(t)
w2(t)

]
(2)

where τ is the FOGM time constant, w1 is the FOGM zero-mean driving white noise
with power spectral density (PSD) q1, ωn is the SOGM natural frequency, ζ is the
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Figure 3 Over short intervals, the Gauss-Markov and random
walk models agree well.

SOGM damping ratio, and w2 is the SOGM zero-mean driving white noise with PSD
q2. Note that the SOGM is not merely an integrated FOGM; as the appendix shows,
the latter is not stable.

Although Eq. 2 is a stochastic differential equation, we can seek a mean-square
solution. With x = [b, d]′ and w = [w1, w2]′, Eq. 2 becomes:

ẋ(t) = Ax(t) + w(t) (3)

where A is given by

A =

[
−1/τ 1
−ω2

n −2ζωn

]
. (4)

Since E [w] = 0, the mean solution, x̄(t), will be given by the homogeneous solution
of Eq. 2. The covariance, P = E

[
(x− x̄) (x− x̄)′

]
, where

P =

[
p11 p12

p21 p22

]
=

[
pbb pbd
pbd pdd

]
(5)

must satisfy

Ṗ (t) = AP (t) + P (t)A′ +Q, (6)

where Q = diag(q1, q2).
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Analytical Solution

Let us first find the homogeneous solution for Eq. 2, in the form:

x(t) = Φ(t, to)x(to). (7)

The state transition function Φ(t, to) must possess the following properties:

Φ̇(t, to) = AΦ(t, to), Φ(to, to) = I (8)

Φ(t, to) = Φ(t, t1)Φ(t1, to), to < t1 < t (9)

Φ(t, to) = Φ(∆t), ∆t = t− to (10)

A state transition function that satisfies these properties is the following:

Φ(∆t) =
ea∆t

b

[
b cos b∆t+ (a+ 2ζωn) sin b∆t sin b∆t

−ω2
n sin b∆t b cos b∆t+ (a+ β) sin b∆t

]
(11)

where

β = 1/τ, (12)

a = −1

2
(β + 2ζωn) , (13)

b =

√
ω2
d + βζωn −

1

4
β2, (14)

ωd = ωn
√

1− ζ2, (15)

and we assume that b2 > 0. Since the noise input is zero-mean, this state transition
matrix allows one to find the mean solution, x̄(t), to Eq. 2.

Let

c = −β
2

+ ζωn;
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then, the covariance is given by the following:

p11(∆t) = q1

[
e2a∆t − 1

4a

(
1 +

c2

b2

)
+
e2a∆t sin 2b∆t

4(a2 + b2)

(
b2 − c2 + 2ac

b

)
+
e2a∆t cos 2b∆t− 1

4(a2 + b2)

(
ab2 − ac2 + 2b2c

b2

)]
+
q2

b2

(
e2a∆t − 1

4a
− e2a∆t(b sin 2b∆t+ a cos 2b∆t)− a

4(a2 + b2)

) (16)

p22(∆t) = q2

[
e2a∆t − 1

4a

(
1 +

c2

b2

)
+
e2a∆t sin 2b∆t

4(a2 + b2)

(
b2 − c2 + 2ac

b

)
+
e2a∆t cos 2b∆t− 1

4(a2 + b2)

(
ab2 − ac2 + 2b2c

b2

)]
+
q1ω

4
n

b2

(
e2a∆t − 1

4a
− e2a∆t(b sin 2b∆t+ a cos 2b∆t)− a

4(a2 + b2)

) (17)

p12(∆t) =
q1ω

2
n

b2

[
c

4a

(
1− e2a∆t

)
+
e2a∆t [(bc− ab) sin 2b∆t+ (ac− b2) cos 2b∆t]− (ac− b2)

4(a2 + b2)

]
+
q2

b2

[
c

4a

(
1− e2a∆t

)
+
e2a∆t [(ab+ bc) sin 2b∆t+ (ac− b2) cos 2b∆t]− (ac− b2)

4(a2 + b2)

]
.

(18)

Approximate Solution

In online filtering applications, the analytical solution may prove cumbersome to
implement, and additionally, the time step may be small in comparison to the modes
of the system. In such cases, an approximate solution may prove useful. The formal
solution to Eq. 2 is

P (t+ ∆t) = Φ(∆t)P (t)Φ′(∆t) + S(∆t), (19)

where

S(∆t) =

∫ t+∆t

t

Φ(τ)QΦ′(τ)dτ, (20)

the simplest approximation to which is S(∆t) = Q∆t.

DISCUSSION

Characteristics of the Solution

Examining the solution given above, we see that the parameter a governs the rate
of decay of all of the exponential terms. Therefore, we define the “rise time” as
that interval within which the transient response of the covariance will reach a close
approximation to the above steady-state value; thus, we define the rise time as follows:

tr = −3

a
. (21)
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Next, we note that all of the trigonometric terms are modulated by 2b; thus we
may view this value as a characteristic damped frequency of the coupled system. The
period of the oscillation, Π, is then

Π = π/b (22)

In the limit as t→∞, all the exponential terms in the analytical solution die out,
so that the steady-state value of the covariance simplifies to:

P (∞) = − 1

4a(a2 + b2)

[
q2 + (2a2 + b2 + c2 − 2ac)q1 β(q2 + q1ω

2
n)

β(q2 + q1ω
2
n) (2a2 + b2 + c2 + 2ac)q2 + q1ω

4
n

]
(23)

Comparison of Numerical, Analytical, and Approximate Solutions

Figure 4 compares the approximate numerical and the exact analytical solutions for
the time evolution of the covariances, for a particular set of parameters. Initially, the
position error is a few percent, but it quickly decreases to a tiny fraction of a percent.
The velocity error is never more than a fraction of a percent. In this example, the
period of the oscillatory response, Π, is about 8.7 hours.
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Figure 4 The approximate analytical solution agrees well with
the exact solution.
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Parameter Sensitivity

Figure 5 shows the results of a sensitivity analysis. The left and right columns
show the sensitivity of the formal error in bias and drift, respectively, to parameter
variations. The FOGM time constant varies from half a day to over a year, the
SOGM damping varies from a very underdamped value of 10−5 to critical, and we
varied the SOGM natural frequency so as to cover a similar range of bias and drift
values to the ranges the other parameter variations produced. It is notable that
varying ωn produces a somewhat wider range of variability in bias than it does in
drift, relative to the ranges of variation that the other parameters produce. This
is similar to the relationship between bias and drift error that would result from a
purely SOGM model, σd/σb = ωn, which the appendix shows. For this reason, we
find that ωn is a useful parameter for adjusting the relative magnitudes of bias and
drift in steady-state, as the discussion below describes further.

Tuning

To use the coupled FOGM/SOGM process as a clock model, we wish to tune it
such that it approximates the usual RW model over time intervals associated with
filtering. For a FOGM, choosing the time constant, τ = 1/β, to be much larger than
the sampling interval causes the FOGM to resemble a RW over intervals less than
the time constant. A similar effect occurs for a SOGM, by choosing the product ζωn
much smaller than the sample interval. The corresponding parameter for the coupled
FOGM/SOGM process is 1/a (recall that a = −β/2− ζωn); choosing 1/a to be much
larger than the sampling interval will cause the coupled FOGM/SOGM process to
resemble a RW over intervals shorter than 1/a. It may also be desirable to select a
value of ζ near unity so as to minimize any ringing that otherwise might creep into
the coupled model from the SOGM dynamics; however, we have not found this to be
a significant problem for even very underdamped values, as the sensitivity analysis
described above shows.

Next, we wish for the slopes of the covariances of the coupled model to be similar
to the RW model. The slopes for the coupled model are given by

ṗ22(t) = q2 − 2ω2
np12(t)− 4ζωnp22(t) (24)

ṗ12(t) = p22(t)− (β + 2ζωn)p12(t)− ω2
np11(t) (25)

ṗ11(t) = 2p12(t) + q1 − 2βp11(t) (26)

whereas for the RW clock model, the slopes are given by

ṗ22 = q2 (27)

ṗ12(t) = p22(t) = q2t (28)

ṗ11(t) = 2p12(t) + q1 = q2t
2 + q1 (29)
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Given that β and ζωn have been chosen to be small∗, we can make the slopes approx-
imately equal over time intervals less than 1/a by choosing q1 and q2 to be the same
as in the RW model.

The final step in tuning the coupled model is to check the steady-state values to
ensure the magnitudes are acceptable. We have found that adjustment of ωn is an
effective means for modulating the relative size of the steady-state drift versus the
steady-state bias variance.

Ensembles of Sample Realizations

Figures 6 and 7 show a couple of examples of ensembles of sample realizations for
two different parameter selections. These examples use the same process noise PSDs,
but different values of the FOGM/SOGM parameters. Both use rather underdamped
values of ζ. The product ζωn is of the same order in both examples however. The
FOGM time constant is almost an order of magnitude larger, and ωn is an order of
magnitude larger, in Fig. 6. In both cases, the rise time is about 30 hours. The most
notable difference between the two examples is the behavior of the sample realizations
of the bias error, with the bias ensemble in Fig. 7 appearing less noise-like, which may
or may not be of interest to filter performance.

CONCLUSION

The coupled first- and second-order Gauss-Markov model for clock errors which
this work contributes may prove useful in a variety of applications. The model is
open-loop stable, which means the designer of a navigation filter may definitively
specify a maximum value for the magnitude of the error growth in the absence of
measurements, thereby alleviating non-sensical results and numerical overflow issues.
The model closely approximates a random walk over a designated rise time, so that
over a given time interval of interest, the model may be tuned to match the error
characteristics of real clocks whose random errors are adequately modeled by the
Allan variance characteristics described in Refs. 1 and 2. If the analytical solution
is not suitable for implementation in some cases, a remarkably simple approximation
for the process noise covariance contribution over small time steps has shown to be
adequate.
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APPENDIX

Here, we specify the random walk, integrated first-order Gauss-Markov, and second-
order Gauss-Markov models.

Random Walk Model

The random walk clock model of Ref. 2 is given by[
ḃ(t)

ḋ(t)

]
=

[
0 1
0 0

] [
b(t)
d(t)

]
+

[
w1(t)
w2(t)

]
, (30)

which leads to the following state transition matrix,

Φ(∆t) =

[
1 ∆t
0 1

]
, (31)

and process noise covariance,

S(∆t) =

[
q1∆t+ q2

∆t3

3
q2

∆t2

2

q2
∆t2

2
q2∆t

]
. (32)

Clearly, the clock drift variance increases linearly with elapsed time, and the clock
bias increases as the cube of elapsed time.

Integrated First-Order Gauss-Markov Model

The integrated first-order Gauss-Markov model is given by[
ḃ(t)

ḋ(t)

]
=

[
0 1
0 −1/τ

] [
b(t)
d(t)

]
+

[
0

w2(t)

]
, (33)

which leads to the following state transition matrix,

Φ(∆t) =

[
1 τ

(
1− e−∆t/τ

)
0 e−∆t/τ

]
, (34)

and process noise covariance,

S(∆t) =
q2τ

2

 τ 2
{(

1− e−2∆t/τ
)2

+ 2∆t
τ

+ 4
(
1− e−∆t/τ

)}
τ
(
1− e−∆t/τ

)2

τ
(
1− e−∆t/τ

)2 (
1− e−2∆t/τ

)
 .

(35)
Clearly, this is an unstable model, as the clock bias variance increases linearly with
elapsed time.
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Second-Order Gauss-Markov Process

The second-order Gauss-Markov model is given by[
ḃ(t)

ḋ(t)

]
=

[
0 1
−ω2

n −2ζωn

] [
b(t)
d(t)

]
+

[
0

w2(t)

]
(36)

Reference 3 gives the following solution for the second-order Gauss-Markov process.

E [b(t)] =bo
e−ζωnt

wd
(ωd cosωdt+ ζωn sinωdt) + do

e−ζωnt

wd
sinωdt (37)

E [d(t)] =− boω2
n

e−ζωnt

wd
sinωdt+ do

e−ζωnt

wd
(ωd cosωdt− ζωn sinωdt) (38)

E
[
b2(t)

]
=

q2

4ζω3
n

[
1− e−2ζωnt

w2
d

(ω2
d + 2ζωnωd cosωdt sinωdt+ 2ζ2ω2

n sin2 ωdt)

]
(39)

E
[
d2(t)

]
=

q2

4ζωn

[
1− e−2ζωnt

w2
d

(ω2
d − 2ζωnωd cosωdt sinωdt+ 2ζ2ω2

n sin2 ωdt)

]
(40)

E [b(t)d(t)] =
q2

2ω2
d

e−2ζωnt sin2 ωdt (41)

In the over-damped case, replace sin and cos with sinh and cosh, respectively. In the
critically-damped case, let ωd → 0, ζ → 1:

E [b(t)] =boe
−ωnt(1 + ωnt) + dote

−ωnt (42)

E [d(t)] =− boω2
nte
−ωnt + doe

−ωnt(1− ωnt) (43)

E
[
b2(t)

]
=
q2

4ω3
n

[
1− e−2ωnt(1 + 2ωnt+ 2ω2

nt
2)
]

(44)

E
[
d2(t)

]
=
q2

4ωn

[
1− e−2ωnt(1− 2ωnt+ 2ω2

nt
2)
]

(45)

E [b(t)d(t)] =
q2t

2

2
e−2ωnt (46)

In any case, as t→∞,

P (t→∞) =
q2

4ζωn

[
1/ω2

n 0
0 1

]
. (47)

Thus, the ratio of the steady-state standard deviations of x and ẋ will be

σd
σb

=ωn, (48)

and these are related to the power spectral density by

q2 =4ζ
σ3
d

σb
. (49)
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